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Abstract-The heat transfer and fluid flow patterns in the mixed convection regimes for the double circular 
cylinders arranged transverse to the vertical air stream arc presented. The difficulty of the non-singular 
grid generation for the present triply-connected region has been effectively resolved by the FEM-FDM 
grid blending technique which requires embedding of finite elements in the small area of major geometrical 
difficulty. The unsteady streamfunction values are assigned rigorously on the cylinder surfaces and on the 
far-field boundary. It has been found that the Karman vortex street breaks down behind the double heated 
cylinders in a transient manner for a certain Richardson number range due to the buoyancy effect and 

vortex interaction, in contrast to the sudden breakdown applicable to a single heated cylinder. 

1. INTRODUCTION 

A NUMBER of experimental research papers on the 
mixed convection heat transfer from a circular cyl- 
inder as well as from tube banks have been published. 
Sharma and Sukhatme [l] presented an experimental 
study on the mean heat transfer from a heated tube 
in a crossflow. Oosthuizen and Madan [2] suggested 
a correlation formula relating the forced convection 
heat transfer to the mixed convection one. They also 
studied the heat transfer from the circular cylinder 
affected by change of forced flow direction [3]. Hatton 
et al. [4] proposed in the mixed convection regime a 
correlation formula based on the vectorial addition 
of the forced and natural convection heat transfer 
coefficients. 

Numerical studies have also been accomplished by 
many authors. Joshi and Sukhatme [5], Sparrow and 
Lee [6], and Merkin [7] analysed the mixed convection 
problem for a circular cylinder using the boundary 
layer approximation. Jain and Lohar [8] investigated 
unsteady mixed convection heat transfer from a cir- 
cular cylinder under the Boussinesq approximation. 
Badr [9, lo] also calculated the Navier-Stokes and 
energy equations and studied the influence of the for- 
ced flow direction in the low Reynolds number range 
up to 40. 

The mixed convection heat transfer from a circular 
cylinder has attracted much attention due to appli- 
cation to the probe of the hot-wire anemometer sub- 
merged in a low speed fluid flow. The study of the 
heat transfer characteristics of tube banks, on the 
other hand, has attracted researchers due to the 
importance in view of the heat exchanger design. 
Faghri and Rao [ll] investigated the effect of fins 
installed at each cylinder of the tube banks. The heat 

and momentum transfer from the in-line tube bundles 
in a crossflow were studied numerically in ref. [ 121. In 
these works the computational domain was split into 
smaller regions, each of which has periodic boundary 
conditions in one or two directions. 

Noto and Matsumoto [13] showed through exper- 
iments that the Karman vortex street behind a cyl- 
inder could suddenly break down due to the buoyancy 
force assisting the mixed convection. For mixed con- 
vective flow parallel to the direction of the gravi- 
tational force, it was computed that by increasing the 
Grashof number against a constant Reynolds number 
the Strouhal number indeed increased gradually 
before it suddenly fell to zero [14]. 

In this paper the fluid flow and heat transfer charac- 
teristics of the unsteady mixed convection about a 
pair of parallel circular cylinders arranged transverse 
to the vertical air stream are studied. The interaction 
of the vortex streets from the two cylinders, which is 
already complicated and nonperiodic depending on 
the cylinder distance, was proved to be much affected 
by the buoyancy force. The present problem cannot 
be treated as a component of the tube bank system 
having periodic boundary conditions. Instead the 
whole flow domain has been computed here with the 
far-field boundary conditions specified accurately. 
Since the flow domain is also mathematically tripiy 
connected, the ordinary computational grid gen- 
eration has the trouble of having grid singularity on 
the body surface ; Chen and Tong [15], for example, 
could not avoid the singular points on the droplet 
surfaces of the droplet arrays. The present authors 
have introduced the FEM-FDM grid blending tech- 
nique to remove the grid singularity as well as the 
difficulty in applying surface boundary conditions ; 

see also ref. [16]. 
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NOMENCLATURE 

N cylinder radius u, 1 vertical and horizontal components of 

CD drag coefficient, drag/(l/2)pU$ (2~) velocity 

c, lift coefficient, lift/( I /2)p U$ (2~) C’, speed of free stream 

c, specific heat at constant pressure .Y. J Cartesian coordinates. 

9 gravitational acceleration 

.4* dimensionless gap size between double 
circular cylinders Greek symbols 

Gr Grashof number, sfl( T- T,,)(2a) ‘/v’ thermal diffusivity 
/I local heat transfer coefficient ;i coefficient of volumetric thermal 
I< thermal conductivity expansion 
n normal direction from computational 

c 
dimensionless vorticity 

boundary ; angular coordinate 

iliu,, . NM,,, local and mean Nusselt numbers iu dynamic viscosity 

N% forced convection Nusselt number I’ kinematic viscosity 
Pr Prandtl number, v/a = pC,/k i;? rl general coordinates 
RC Reynolds number, 2aU,~/v I’ density 
t dimensionless time 6 dimensionless temperature, 
T temperature (T- T,>)I(T,- 7-f) 
T,> T, temperature of wall and free stream li/ dimensionless strcamfunction. 

_ 

When the two cylinders are close within one diam- FDM 

eter distance and when they are not heated, it has been 
shown that the wake flow is aperiodic and bistable 
[16-l 81. In the present work we have shown that syrn- 
metry and periodicity can be resumed by the buoyancy 

force assisting the flow at the same Reynolds number. 
Also, contrary to the earlier findings that the Karman 
vortex street behind a single heated cylinder could 
break down very suddenly [13, 141, it has been found 
that an oscillating transient period of time is necessary 
before the vortex sheddings are broken in the case of 
heated interactive cylinders. We have considered three 
cases of Grashof number, Gr = IO’, 5 x IO’, and IO4 
while the Reynolds number was fixed at Re = 100. 

The Prandtl number was taken as 0.7 and the cylinder 

distance was 0.7 diameter. ~~ outer boundary of the FEM subdomain 

,nner boundary of the FDM subdomain 

FIG I. Schematic diagram or the flou and division ot the 
computational domain. 

incom- 

2. PROBLEM STATEMENT AND 

MATHEMATICAL FORMULATION 

We consider two-dimensional, unsteady 

pressible viscous flow past heated double circular cyl- ;; 7” :” 2 

inders arranged transverse to the air stream. The schc- 
or + U 9? + 2’ ;> = --vz;_ “I^ i’d 

c;lx CJ’ RP 2Re’ (1) (I) 

matic diagram of the flow geometry is given in Fig. 1. 
The direction of the incident flow is upward and the 

vziJj = --; (2) 

buoyancy force assists the flow. The fluid properties ?& a& &p 

such as kinematic viscosity, r, coefficient of volumetric (7; +llg; +r 1~ = (3) 
0 .I“ 

I(62Pr V’O 

thermal expansion, b, and thermal conductivity, k, 
are assumed constant. The Boussinesq approximation where 

is taken by holding the density, p, constant except in 
the buoyancy force term. 

The conservation equations of mass, momentum, 
and energy can be put in non-dimensional vorticity 
and streamfunction form as 
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Re = 2aUJv 

Gr = gfl(Tw - Tm)(2a)3/v2 

Pr = v/u = pC,/k. 

The dimensionless variables t, (‘, tj and 4 are defined 
as 

t = t*U,/a, [ = [*a/U, 

ti = VlaU,, 4 = CT-- TmWw - Td 

where the asterisk implies the corresponding dimen- 
sional quantity. Here T is absolute temperature. 

We assume that the fluid is initially stationary 
before the double cylinders are suddenly heated to a 
unit temperature. The boundary conditions are taken 
as follows : 

wall surface boundary 

ti = 4&,(t) 

far-field boundary 

G = hA4 x3 Y) 

[ = 4 = 0 (inflow boundary) 

an - an - 0 (outflow boundary) (5) 

where n denotes the normal direction from the bound- 
aries. The streamfunction values on both the surface 
and far-field boundaries are not fixed but calculated 
at each time step. tjwa,,(f) can be determined from the 
single valuedness of pressure [19] and tier(t, x,Y) is 
obtained using the integral-series method [20] 
developed in the earlier work of the authors. The far- 
field boundary is located from the origin by as much 
as 25 cylinder radii. 

3. NUMERICAL METHODS 

We apply the FEM-FDM grid blending technique 
to the present calculations. The computational 
domain of the present problem is split into two sub- 
domains overlapped over a thin common buffer layer. 
This buffer layer belongs to either the FEM or the 
FDM subdomain depending upon the computation 
process. The newest information calculated in one 
subdomain is iteratively transferred to the other 
through this buffer layer. The buffer layer occupies as 
few as one element width band. 

Discretizing the FEM subdomain to apply the 
Galerkin method leads to the following system of 
ordinary differential equations of matrix form : 

K$-MC=0 (7) 

The Euler explicit method is used to integrate equa- 
tions (6) and (8) in the time direction. The linear 
systems are solved with the frontal technique which is 
a sort of direct Gaussian elimination. Since there is 
no pressure term, the four-node isoparametric el- 
ements with bilinear shape functions are applied to all 
variables. 

In order to accomplish calculations in the FDM 
subdomain the governing equations (l)-(3) are trans- 
formed to the general coordinate system of 5 and q. 
The transformation of the equations is based on the 
following formula : 

.L = (Y?Ji -Ysf,W’ (9) 

f, = Cx,f, -x,fs)iJ’ (10) 

V’f = (~~tc-2B~,+yf~,,+of,+z~)/J2 (11) 

where 

u=x;+y; (12) 

B = XCXV +Y,Y, (13) 

y = x:+Y; (14) 

0 = Kc% - 2Bx,, + YX,,)Y, 

-(EY,, -2Byrs +~~,,)x,llJ (15) 

t = KEYce - VYC, + ?IYf&% 

-(a+ -3% +~xtl,)~,l/J (16) 

J = xe~s-xs~i’. (17) 

Here f is an arbitrary function and all subscripted 
variables represent derivatives. The metric coefficients 
and the Jacobian, J, are obtained by the numerical 
grid generation technique. Of the many techniques, 
that of Steger and Sorenson [21] is chosen in the 
present study to generate the O-mesh to be us&d in 
the FDM region surrounding the FEM region. 

Central differencing in space and forward Euler 
differencing in time are used to retain compatibility 
with the FEM formulation. The finite difference form 
of the streamfunction equation is solved by the point- 
SOR method. 

4. RESULTS AND DISCUSSION 

The discretized finite elements in the inner FEM 
region and part of the finite difference grid in the outer 
FDM region are shown in Fig. 2. The finite elements 
and the nodal points were counted as 780 and 849, 
respectively, while the finite difference grid size was 
61 x 41. It is noteworthy that the number of common 
elements in the buffer layer was only 60; these are 
marked by the shading in Fig. 2. The discretized time 
step A.t was 0.02 and each case of the present cal- 
culations has been accomplished within 60 s of the 
dimensionless time. 
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a b 

1:~;. 2. 7‘hc blcndcd grid system 

C d 
a 

C 

b 

d 
I+;. 3. Streamlines: (a) Gr = IO’. I = 60; (h) Gu = S x IO’. 
f=20; (c, Gu=5xlO’, ,=60, (d) Gr=104. :-ho. 

(Rr = 100 in all cases.) 

It is well known that the wake flow behind a single 
cylinder becomes unstable and the Karman vortex 
street is built up if the Reynolds number is raised over 
40. In the pure buoyant flow of natural convection. 

FK;. 4. Isotherms: (a) Gr = IO’. I = 60: (b) Gr = 5 x I()‘. 
,=2(): (c) Gr=.sxlO’. t=60: (d) Gt.=lO’. L-=60. 

(Rc = 100 in all case\.) 

however, thcrc is no Karman vortex street. Buoyancy 
then acts as a stabilizing force in the mixed convection 
regime if the free stream is in the vertical direction. 
Experiments by Noto and Matsumoto [ 131 and 
numerical calculations by Chang and Sa [ 141 have 
indeed shown that the Karman vortex street could 
suddenly break down by the buoyancy force. 

However, the wake flow behind the double cyl- 

inders arranged transverse to the free stream is more 
unstable and show the bistability when 9” < I .O. The 
gap flow between the two cylinders is biased to one 
or the other direction [16]. If the double cylinders are 
heated to generate the buoyancy force. the gap flow 
then has the Lcndency ofstraightening up. The stream- 
lines shown in Fig. 3 describe such a bchaviour. When 
the buoyancy force is weak. the gap flow remains still 
biased (set Fig. 3(a)). With stronger buoyancy force. 
howcvcr, the gap flow becomes straight and the whole 
wake flow takes first the symmccric shedding form 
(see Fig. 3(b)) and then the stationary twin vorticcx 
attach to the cylinders. The tcmpcrature and rhc \ or- 
ticity contours shown in Figs. 4 and 5 also support 
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a 

C 

b 

d 
FIG. 5. Isovorticities : (a) Gr = 103, t = 60; (b) Gr = 5 x 103, 
t=20; (c) Gr=5xlO’, t=60; (d) Gr=104, t=60. 

(Re = 100 in all cases.) 

such characteristics. In contrast to the sudden vortex 

breakdown in the case of a single cylinder [14], the 
present double cylinders experience a transient vortex 
breakdown process. For some time after sudden heat- 
ing of the cylinders in a free stream, the dynamic 
vortex shedding persists in a transient manner before 
it finally breaks down to the steady-state twin vortices. 
As the Richardson number, Gr/Re’, is further 
increased, the transient time period is shortened to 
as small as zero. The lift coefficient curves shown in 
Fig. 6 clearly show the accelerated transient oscil- 
latory behaviour with higher Grashof number. 

Figure 7 shows the drag coefficient curves. In the 
case of Gr = 103, the drag coefficients of the two cyl- 
inders are seen to deviate from each other (curves I 
and II). The two curves are in accord with each other 
in the cases of Gr = 5 x IO3 and 104. Like the case of 
a single cylinder, the drag coefficient increases as the 
Grashof number is raised. This is because the wake 
becomes more and more buoyant so that the pressure 
drag as well as the skin friction are elevated for a fixed 
Reynolds number. 

I I I I I I I 
0 10. 20. 30. 40. 50. 60. 

FIG. 6. The lift coefficient (CL) curves: (a) Gr = 10’; (b) 
Gr = 5 x IO3 ; (c) Gr = 104. (Re = 100 in all cases.) 
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.z 
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0. 10 20. 30 40. 50 60. 
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FIG. 7. The drag coefficient (CD) curves : (a) Gr = 10’ ; 
Gr = 5 x 10’ ; (c) Gr = 104. (Re = 100 in all cases.) 

(b) 

180. 

angle 8 (degree) 

360 

FIG. 8. The local Nusselt number distributions on one of 
the double cylinders: ----, Gr = 5 x lo’, Re = 100; -, 
Gr = 104, Re = 100; -_O--, Gr/Re* = 1.0 for a single cyl- 

inder [5] ; S.P. denotes the separation point. 

Figure 8 shows the distribution of the local Nusselt 

number defined by 

Nus=2ah,k=-2 (18) 

For Gr/Re’ = 1.0 (Gr = lo4 and Re = IOO), the pre- 
sent result is compared with the single cylinder result 
by Joshi and Sukhatme [5]. The two agree closer in 
the outer part than in the inner part on one of the 
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5.0 0.5 15 1.5 2.0 

(r/a) 
(Temp. or Vel.) 

20 li 

1.5 - 

1.0 I -7 
0.0 0.5 1.0 1.5 2.0 

(Temp. or Vel.) 

FIG. 9. The temperature and velocity profiles on the cylinder 
surfaces: (a) #=90”: (h) H=270’. (A) Gr=5xlO’. 

Re = 100: (B) Gr = 104, Ro = 100. 

double cylinders since the flow of the outer part is 
more similar to that of a single cylinder. It implies 
that the thermal convection is slightly more vigorous 
in the inner part than in the outer part. This fact is 
suggested by the thinner thermal and velocity bound- 
ary layers on the inner part (0 = 270”) than on the 
outer part (0 = 90’) as plotted in Fig. 9. 

Figure 10 shows the time history of the mean Nus- 
selt number. Similar to the drag coefficient curves, the 
mean Nusselt number of one cylinder is increased with 
the Grashof number due to the enhanced thermal 
convection process. In Table 1 the mean Nusselt num- 
bers of the double cylinders arc compared with the 
single cylinder results reported by some researchers. 
The correlation values of Nu, are obtained from the 

FIN;. 10. The mean Nussclt number curves: (a) Gr = 10’ : 
(b) Gr = 5 x 10’: (c) Gr = IO’. (Rc = 100 in all cases.) 

t’ormula by Oosthuizen and Madan 171 

The mean Nusseft numbers of the double cylinders 
are seen again slightly larger than those of the single 
cylinder cases because of the enhanced heat transfer 
in the inner parts of the double cylinders. 

5. CONCLUSlON 

The mixed convective flow and heat transfer from 
the double circular cylinders are studied for three cases 
of GrjRe’. The FEM-FDM grid blending technique 
has beautifully worked for the tripIy-connected con- 
figuration of the present problem. It has been found 
that the breakdown of the Karman vortex street from 
the double heated cylinders occurs in a transient man- 
ncr due to the vortex interaction and buoyancy effect. 
in contrast to the sudden breakdown applicable to the 
singie heated cylinder. It has also been found that heat 
transfer is more vigorous locally on the inner parts 
than on the outer parts of the double cylinders due to 
the activated buoyant gap ilow. 

Table 1. Mean Nusselt numbers 

Authors 

Single cylinder 
Eckert and Soehngen [22] 
Hitpert j23j 
Chang and Sa [l4] 
McAdams 1241 

Double cylinders 
Present results 

IVEQ,., wu,, Nit,, 
Re = 100 Re = 100 Rr = 100 
Gr = 0 Gr = 5.0 x 10’ tir= 1.0x 10’ 

5.23 S.6gh 6.11” 
5.26 5.72” 6.iSh 
5.23” 5.56” 5.98” 
5.04 5.4@ 5.8gh 

5.75” 6.16” 

l‘ Navier-Stokes computation value. 
h Correlation value. 
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TRANSFERT DE CHALEUR ET DEVELOPPEMENT DUN VORTEX LIBRE PAR UNE 
PAIRE DE CYLINDRES CIRCULAIRES DANS UN ARRANGEMENT 

TRANSVERSAL 

R&urn&On presente le transfert de chaleur et les configurations d’ecoulement dans des regimes de 
convection mixtes pour deux cylindres circulaires en arrangement transversal a un Ccoulement d’air vertical. 
Une difficult6 de generation de grille pour la region triplement connect&e a et& efficacement resolue par la 
technique melee de grille FEM-FDM qui demande le logement des elements finis dans une petite surface 
de grande difficulte geometrique. Les valeurs variables de la fonction de courant sont rigoureusement 
assignees sur les surfaces des cylindres et sur la frontiere lointaine du domaine. On a trouvt que l’allee de 
tourbillons de Von Karman se rompt derriere les deux cylindres chauffes d’une facon variable, pour un 
certain domaine de nombre de Richardson due a un effet de flottement et une interaction de tourbillons, 

en contraste avec la rupture nette dans le cas d’un cylindre chaud unique. 

WARMEUBERGANG UND AUFTRIEBSBEDINGTE WIRBELABLOSUNG AN EINEM 
PAAR QUERLIEGENDER KREISZYLINDER 

Znsammenfassung-Es werden die Formen von Warmeiibergang und Stromung bei Mischkonvektion an 
einem Paar von Kreiszylindem, das quer von Luft angestromt wird, vorgestellt. Die Schwierigkeit der 
nicht-singularen Gittergenerierung wird fur das vorliegende dreifach verbundene Gebiet mit Hilfe des FEM- 
FDM-Verfahrens der Gittererzeugung bewaltigt. Dieses Verfahren erfordert die Einbettung zusltzlicher 
Elemente in dem kleinen, geometrisch schwierigen Gebiet. Die nicht-stationlren Werte der Stromfunktion 
werden exakt an den Zylinderoberflachen und an den Begrenzungen des Fernfeldes bezeichnet. Es zeigt 
sich, daD die Karman’sche WirbelstraDe hinter dem beheizten Zvlindernaar in transienter Weise in einem 
bestimmten Bereich der Richardson-Zahl zusammenbricht. bies wird durch Auftriebseffekte und 
Wirbeliiberlagerung verursacht und steht im Gegensatz zum pldtzlichen Zusammenbrechen bei einem 

einzelnen beheizten Zylinder. 
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TErIJIOl-IEPEHOC, B3AMMOJJE6iCTBHE M CPbIB KOHBEKTHBHMX BUXPEti 3A 
nAPOn I-OPH30HTAJIbHbIX ~RJIkiH,QPOB KPYl-JIOI-0 CE4EHMII 

h,"OTP,@,H--OuHCbIBaIoTcR KapTHHbI CMeUIaHHOKOHBeKTABHbIX TeunOuepeHoca II TeYeHB,, Z.KUAKocTA B 

CJty'iae UOuCpeWOrO 06TeKaHan BO3AyXOM flapbt rOpH3OHTaJIbHbIX UWUUIApOB KpyrnOrO CeSeHIIR. 

TpyAHOCTb COJABHAFI HCCHHI-ynRpHOfi CCTKA AJES ACCneAyCMOi-4 o6nacTa C TpOkHOii CB113bH) yCueUIH0 

npeoAoneHa c mnonb3oBameM MeToAa, CoveTamuero CCTKII MK3 u MKP A Tpe6ymuero BBoAa 

KOHC'lHblX 3AeMeHTOB L3 MaJQ'IO o6nacrb, UpCACTaBJlStoIUylO OCHOBHylO rCOMeTpllWCKylO CnO~HOCTb. 

Ha noBepxHocTnx UmniaApoe B rpaewue yAaneHHor0 nom 3aAaBanacb HecrauiiotiapHbre 3HaqeHm 

+yHKUEiEi TOKB. HafiAeHO, 'IT0 Up&i HCKOTOpbIX 3HaYeHBJlX 'UiCJla PWiapACOHa 6naroAapn S$+eKTaM 

UOA~MHOii CHAbl H B3aLiMOAeiiCTBEUO BEiXpei-4 UpOHCXOAHT HeyCTLlHOBHBlu5ifWl UpOUWC pa3pyLUCHWl 

BHXpCBbIXAOpO~eK KapMaHa 3;1 UapOii HarpCTbIX UHnHHApOB,',TO OTAUYaeTCR OT Cny'EaR CeAAHAYHblM 

ulmesApoM, BKOTOPOM paspyureaue npoacxoAllT 9He3anrso. 


